Bacteria are life forms, which, like all other life forms, struggle for
the best living conditions for themselves. Therefore they will try to
avoid getting attacked by the human immune system, and therefore they
have developed various ways to protect themselves from the human immune
system. When safe from the immune system, they can focus on breeding and
multiplying, and if they become numerous enough, the human body will
experience their presence as an infection. Some bacteria are relatively
harmless, while others are fatal. The bacteria avoid being attacked by
the human immune system by forming a biofilm - a surface to protect them
against the immune system.
"The biofilm contributes to bacterial resistance, and that can cause severe, persistent infections around heart valve implants and in lungs and the urinary tract," explains postdoc. Mikkel Girke Jørgensen from the Department of Biochemistry and Molecular Biology at the University of Southern Denmark. Together with professor Poul Valentin-Hansen from the same institution and scientists from American Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, and Georgetown University Medical Center, Washington DC, he stands behind the new discovery.
The researchers now understand the underlying regulatory mechanisms behind the formation of biofilms. The mechanism involves small RNA molecules, which can affect bacterial gene expression and thus the decision of whether to form biofilm or not.
Bacteria can move by using their so-called flagella to swim with. When they need to form biofilms, they "turn off" the flagella, stop moving and start to form a biofilm.
"We have now established what decides whether they swim or not - and that determines whether they form biofilms or not," explains Mikkel Girke Jørgensen and continues:
"Prospects for the pharmaceutical industry are huge. This increased understanding of biofilm formation may be the first step in creating new ways to treat complicated infections in the future. "
"The biofilm contributes to bacterial resistance, and that can cause severe, persistent infections around heart valve implants and in lungs and the urinary tract," explains postdoc. Mikkel Girke Jørgensen from the Department of Biochemistry and Molecular Biology at the University of Southern Denmark. Together with professor Poul Valentin-Hansen from the same institution and scientists from American Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, and Georgetown University Medical Center, Washington DC, he stands behind the new discovery.
The researchers now understand the underlying regulatory mechanisms behind the formation of biofilms. The mechanism involves small RNA molecules, which can affect bacterial gene expression and thus the decision of whether to form biofilm or not.
Bacteria can move by using their so-called flagella to swim with. When they need to form biofilms, they "turn off" the flagella, stop moving and start to form a biofilm.
"We have now established what decides whether they swim or not - and that determines whether they form biofilms or not," explains Mikkel Girke Jørgensen and continues:
"Prospects for the pharmaceutical industry are huge. This increased understanding of biofilm formation may be the first step in creating new ways to treat complicated infections in the future. "
1 comment:
Hello, I do think your blog could be having browser compatibility issues.
Whenever I look at your web site in Safari, it
looks fine however, when opening in Internet Explorer, it's got some overlapping issues. I merely wanted to provide you with a quick heads up! Other than that, wonderful site!
Also visit my web site free online advertising
Post a Comment